Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Am J Physiol Regul Integr Comp Physiol ; 320(6): R824-R832, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-33789445

RESUMO

To examine the role of chronic (in)activity on muscle carnosine (MCarn) and how chronic (in)activity affects MCarn responses to ß-alanine supplementation in spinal cord-injured athletes, 16 male athletes with paraplegia were randomized (2:1 ratio) to receive ß-alanine (n = 11) or placebo (PL, n = 5). They consumed 6.4 g/day of ß-alanine or PL for 28 days. Muscle biopsies of the active deltoid and the inactive vastus lateralis (VL) were taken before and after supplementation. MCarn in the VL was also compared with the VL of a group of individuals without paraplegia (n = 15). MCarn was quantified in whole muscle and in pools of individual fibers by high-performance liquid chromatography. MCarn was higher in chronically inactive VL vs. well-trained deltoid (32.0 ± 12.0 vs. 20.5 ± 6.1 mmol/kg DM; P = 0.018). MCarn was higher in inactive vs. active VL (32.0 ± 12.0 vs. 21.2 ± 7.5 mmol/kg DM; P = 0.011). In type-I fibers, MCarn was significantly higher in the inactive VL than in the active deltoid (38.3 ± 4.7 vs. 27.3 ± 11.8 mmol/kg DM, P = 0.014). MCarn increased similarly between inactive VL and active deltoid in the ß-alanine group (VL: 68.9 ± 55.1%, P = 0.0002; deltoid: 90.5 ± 51.4%, P < 0.0001), with no changes in the PL group. MCarn content was higher in the inactive VL than in the active deltoid and the active VL, but this is probably a consequence of fiber type shift (type I to type II) that occurs with chronic inactivity. Chronically inactive muscle showed an increase in MCarn after BA supplementation equally to the active muscle, suggesting that carnosine accretion following ß-alanine supplementation is not influenced by muscle inactivity.


Assuntos
Carnosina/metabolismo , Homeostase/fisiologia , Músculo Esquelético/fisiopatologia , Traumatismos da Medula Espinal/fisiopatologia , Medula Espinal/fisiopatologia , Atletas , Suplementos Nutricionais , Humanos , Medula Espinal/efeitos dos fármacos , beta-Alanina/administração & dosagem , beta-Alanina/farmacologia
2.
Med Sci Sports Exerc ; 53(5): 1079-1088, 2021 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-33148972

RESUMO

PURPOSE: This study aimed to describe the kinetics of carnosine washout in human skeletal muscle over 16 wk. METHODS: Carnosine washout kinetics were studied in 15 young, physically active omnivorous men randomly assigned to take 6.4 g·d-1 of ß-alanine (n = 11) or placebo (n = 4) for 8 wk. Muscle carnosine content (M-Carn) was determined before (PRE), immediately after (POST), and 4, 8, 12, and 16 wk after supplementation. High-intensity exercise tests were performed at these same time points. Linear and exponential models were fitted to the washout data, and the leave-one-out method was used to select the model with the best fit for M-Carn decay data. Repeated-measures correlation analysis was used to assess the association between changes in M-Carn and changes in performance. RESULTS: M-Carn increased from PRE to POST in the ß-alanine group only (+91.1% ± 29.1%; placebo, +0.04% ± 10.1%; P < 0.0001). M-Carn started to decrease after cessation of ß-alanine supplementation and continued to decrease until week 16 (POST4, +59% ± 40%; POST8, +35% ± 39%; POST12, +18% ± 32%; POST16, -3% ± 24% of PRE M-Carn). From week 12 onward, M-Carn was no longer statistically different from PRE. Both linear and exponential models displayed very similar fit and could be used to describe carnosine washout, although the linear model presented a slightly better fit. The decay in M-Carn was mirrored by a similar decay in high-intensity exercise tolerance; M-Carn was moderately and significantly correlated with total mechanical work done (r = 0.505; P = 0.032) and time to exhaustion (r = 0.72; P < 0.001). CONCLUSIONS: Carnosine washout takes 12-16 wk to complete, and it can be described either by linear or exponential curves. Changes in M-Carn seem to be mirrored by changes in high-intensity exercise tolerance. This information can be used to optimize ß-alanine supplementation strategies.


Assuntos
Carnosina/metabolismo , Tolerância ao Exercício/fisiologia , Exercício Físico/fisiologia , Músculo Esquelético/metabolismo , beta-Alanina/administração & dosagem , Adulto , Suplementos Nutricionais , Teste de Esforço , Humanos , Modelos Lineares , Masculino , Fatores de Tempo , Adulto Jovem
3.
Am J Physiol Cell Physiol ; 318(4): C777-C786, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-32101455

RESUMO

To test whether high circulating insulin concentrations influence the transport of ß-alanine into skeletal muscle at either saturating or subsaturating ß-alanine concentrations, we conducted two experiments whereby ß-alanine and insulin concentrations were controlled. In experiment 1, 12 men received supraphysiological amounts of ß-alanine intravenously (0.11 g·kg-1·min-1 for 150 min), with or without insulin infusion. ß-Alanine and carnosine were measured in muscle before and 30 min after infusion. Blood samples were taken throughout the infusion protocol for plasma insulin and ß-alanine analyses. ß-Alanine content in 24-h urine was assessed. In experiment 2, six men ingested typical doses of ß-alanine (10 mg/kg) before insulin infusion or no infusion. ß-Alanine was assessed in muscle before and 120 min following ingestion. In experiment 1, no differences between conditions were shown for plasma ß-alanine, muscle ß-alanine, muscle carnosine and urinary ß-alanine concentrations (all P > 0.05). In experiment 2, no differences between conditions were shown for plasma ß-alanine or muscle ß-alanine concentrations (all P > 0.05). Hyperinsulinemia did not increase ß-alanine uptake by skeletal muscle cells, neither when substrate concentrations exceed the Vmax of ß-alanine transporter TauT nor when it was below saturation. These results suggest that increasing insulin concentration is not necessary to maximize ß-alanine transport into muscle following ß-alanine intake.


Assuntos
Transporte Biológico/fisiologia , Insulina/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/metabolismo , Carnosina/metabolismo , Suplementos Nutricionais , Humanos , Masculino , Taurina/metabolismo , beta-Alanina/administração & dosagem , beta-Alanina/sangue , beta-Alanina/metabolismo
4.
Med Sci Sports Exerc ; 50(11): 2242-2252, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30334920

RESUMO

PURPOSE: Cross-sectional studies suggest that training can increase muscle carnosine (MCarn), although longitudinal studies have failed to confirm this. A lack of control for dietary ß-alanine intake or muscle fiber type shifting may have hampered their conclusions. The purpose of the present study was to investigate the effects of high-intensity interval training (HIIT) on MCarn. METHODS: Twenty vegetarian men were randomly assigned to a control (CON) (n = 10) or HIIT (n = 10) group. High-intensity interval training was performed on a cycle ergometer for 12 wk, with progressive volume (6-12 series) and intensity (140%-170% lactate threshold [LT]). Muscle carnosine was quantified in whole-muscle and individual fibers; expression of selected genes (CARNS, CNDP2, ABAT, TauT, and PAT1) and muscle buffering capacity in vitro (ßmin vitro) were also determined. Exercise tests were performed to evaluate total work done, V˙O2max, ventilatory thresholds (VT) and LT. RESULTS: Total work done, VT, LT, V˙O2max, and ßmin vitro were improved in the HIIT group (all P < 0.05), but not in CON (P > 0.05). MCarn (in mmol·kg dry muscle) increased in the HIIT (15.8 ± 5.7 to 20.6 ± 5.3; P = 0.012) but not the CON group (14.3 ± 5.3 to 15.0 ± 4.9; P = 0.99). In type I fibers, MCarn increased in the HIIT (from 14.4 ± 5.9 to 16.8 ± 7.6; P = 0.047) but not the CON group (from 14.0 ± 5.5 to 14.9 ± 5.4; P = 0.99). In type IIa fibers, MCarn increased in the HIIT group (from 18.8 ± 6.1 to 20.5 ± 6.4; P = 0.067) but not the CON group (from 19.7 ± 4.5 to 18.8 ± 4.4; P = 0.37). No changes in gene expression were shown. CONCLUSIONS: In the absence of any dietary intake of ß-alanine, HIIT increased MCarn content. The contribution of increased MCarn to the total increase in ßmin vitro appears to be small.


Assuntos
Carnosina/metabolismo , Treinamento Intervalado de Alta Intensidade , Músculo Esquelético/metabolismo , Adaptação Fisiológica , Limiar Anaeróbio , Distribuição da Gordura Corporal , Peso Corporal , Dieta Vegetariana , Teste de Esforço , Expressão Gênica , Humanos , Ácido Láctico/sangue , Masculino , Fibras Musculares de Contração Rápida/metabolismo , Fibras Musculares de Contração Lenta/metabolismo , Consumo de Oxigênio , beta-Alanina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...